Life Cycle Cost Analysis Review and Examples

John Harvey and Bill Nokes
University of California
Partnered Pavement Research Center

Pavement Performance (Life) Curve

Generic LCCA – Input

Initial Traffic and Traffic Growth Rate Performance Curve – use local service life information Cost Agency costs User costs – work zone delay cost only Salvage Values **Analysis Period** must be same for present value analysis use equiv uniform annual cost if different **Discount Rate** use the official rate

Table 605.3 Life-Cycle Economic Comparison of Pavement Types (Variable-Year Analysis Period and 4% Discount Rate)

ALTERNATIVE 1	Cost Per Kilometer With Shoulders	
Initial Cost =	\$(<u>A</u>	_)
Rehabilitation Costs in Year:		
Repair Cost =	\$(<u>b</u>)	
Engineering $$(\underline{b})(0.1225) =$	\$()	
Appurtenant and Supplemental Work $(\underline{b})(0.1350) =$	\$()	
Traffic Delay =	\$()	
	\$(<u>c</u>)	
Present Worth Cost of Rehabilitation Work in Year	$(\underline{c}) (PWF) = (\underline{C})$	_)
Rehabilitation Costs in Year: ****		
Repair Cost =	\$(<u>d</u>)	
Engineering $$(\underline{d})(0.1225) =$	\$()	
Appurtenant and Supplemental Work $(\underline{d})(0.1350) =$	\$()	
Traffic Delay =	\$()	
	\$(<u>e</u>)	
Present Worth Cost of Rehabilitation Work in Year	$(\underline{e}) (PWF) = (\underline{E})$	_)
Annual/Average Maintenance over years (See Index 605.3(2)	(b) $(\frac{*}{10.3742}) = (F)$	_)
Subtotal (A+C+E+F)	\$(-
Less Salvage Value (of rehabilitation)** (Va	riable Ratio) $(\underline{c})(PWF) = -(\underline{c})$	_)
C Pavement Net Present Worth Cost	\$(_)

For both new pavement and rehab! Doesn't assume 20 year life

Continuously Reinforced Concrete Pavement

Fig. 4 Reinforcing Steel in place on base

Fairfield, CA
I-80 (old US 40)
WB, lanes 1 and 2
Test section
Service life (55 years):
initial construction 1949
repair localized problems
lane 2 grind in 1990s

"...reinforcement to control cracking is probably not economical and cannot be justified *unless* an equivalent benefit is attained with relation to long-time riding qualities and greater durability..."

T. Stanton, 1951

Post-constr. report: www.dot.ca.gov/hq/research/researchreports/5/reports/51-05.pdf

Example of Building Life Cycle Cost Diagram

Note: costs and performance are estimates from Oregon DOT, for example purposes only

Continuously Reinforced Concrete Pavement (CRC)

Initial Cost about 1.25 to 1.5 x current PCCP Life cycle:

initial construction

AC overlay at 35 to 55 years on major freeways

CRC Example – 35 year service life

Analysis Period

Example of Building Life Cycle Cost Diagram

Note: costs and performance are estimates from Oregon DOT, for example purposes only

Continuously Reinforced Concrete Pavement (CRC)

Initial Cost about 1.25 to 1.5 x current PCCP Life cycle:

initial construction

AC overlay at end of service life

What Happens if We Use Inappropriate Service Life in LCCA?

Assumed Life	PV	Equiv Annual Cost
20 yrs	\$ 28,123,000	\$ 1,718,000
Analysis period	l 35 years	
35 yrs	\$ 26,853,000	\$ 1,511,000
Analysis period 45 years		12 % less!
55 yrs	\$ 26,119,000	\$ 1,363,000
Analysis period	l 65 years	21 % less!!

Had to use Equivalent Uniform Annual Cost because have different analysis periods

How Do We Know What the Performance Will Be?

Traffic and traffic growth projections

Climate predictions

Performance prediction

Another Example: Grind JPC vs ACOL (estimated numbers again, 20 year analysis period)

Assumed Life	PV	Equiv Annual Cost		
Grind lasts 15 years, then ACOL lasts 10 years				
\$	4,704,000	\$ 377,000		
Grind lasts 8 years, then two ACOLS each 10 years				
\$	7,940,000	\$ 637,000		
ACOL lasts 10 years, then 2nd ACOL lasts 10 years				
\$	10,482,000	\$ 841,000		
Three ACOLs, each lasting 7 years				
\$	14,390,000	\$ 1,155,000		
Cost Source: 2003 State of the Pavement report				

Performance estimated, assume 30 In-km project

Pavement Strategy Selection

Is Life Cycle Cost the only criterion?
Construction constraints
Compatibility with existing structures
Performance constraints
Maintenance constraints
other constraints

Summary

- Use best estimate of local service lives (concrete <u>CAN</u> be much greater than 20 years)
- LCCA is a powerful tool for comparing alternatives for <u>BOTH</u> new construction and rehab
- If comparing short lives with long lives, use Equivalent Uniform Annual Cost, not Present Value

Thank You

Present Value Equations

Single cost

$$P = F * [1/(1 + i)^n]$$

distributed cost

$$P = A * {[(1+i)^n - 1] / [i(1+i)^n]}$$

Equivalent Uniform Annual Cost

 $A=P\{i[1+i]^n\}/\{[(1+i)^n-1]\}$